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Abstract 

In certain contexts, maximum entropy (ME) modeling can be viewed as maximum likelihood train- 
ing for exponential models, and like other maximum likelihood methods is prone to overfitting of 
training data. Several smoothing methods for maximum entropy models have been proposed to 
address this problem, but previous results do not make it clear how these smoothing methods com- 
pare with smoothing methods for other types of related models. In this work, we survey previous 
work in maximum entropy smoothing and compare the performance of several of these algorithms 
with conventional techniques for smoothing n-gram language models. Because of the mature body 
of research in n-gram model smoothing and the close connection between maximum entropy and 
conventional n-gram models, this domain is well-suited to gauge the performance of maximum 
entropy smoothing methods. Over a large number of data sets, we find that an ME smoothing 
method proposed to us by Lafferty [1] performs as well as or better than all other algorithms under 
consideration. This general and efficient method involves using a Gaussian prior on the parame- 
ters of the model and selecting maximum a posteriori instead of maximum likelihood parameter 
values. We contrast this method with previous n-gram smoothing methods to explain its superior 
performance. 
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1    Introduction 

Maximum entropy (ME) modeling has been successfully applied to a wide range of domains, in- 
cluding language modeling as well as many other natural language tasks [2, 3, 4, 5]. For many 
problems, this type of modeling can be viewed as maximum likelihood (ML) training for exponen- 
tial models, and like other maximum likelihood methods is prone to overfitting of training data. 
While several smoothing methods for maximum entropy models have been proposed to address this 
problem [6, 1, 7, 5], previous results do not make it clear how these smoothing methods compare 
with smoothing methods for other types of related models. 

However, there has a been great deal of research in smoothing n-gram language models, and 
it can be shown that maximum entropy n-gram models are closely related to conventional n-gram 
models. Consequently, this domain is well-suited to gauging the performance of maximum entropy 
smoothing methods relative to other smoothing techniques. 

In this work, we survey previous work in maximum entropy smoothing and compare the perfor- 
mance of several of these algorithms with conventional techniques for smoothing n-gram language 
models. Evaluating the perplexity of each method over a large number of data sets, we find that 
the ME smoothing method proposed to us by LafFerty [1] performs as well as or better than all 
other algorithms under consideration. In this method, a Gaussian prior on model parameters is 
applied and maximum a posteriori instead of maximum likelihood parameter values are selected. 
While simple and efficient, this method exhibits all of the behaviors that have been observed by 
Chen and Goodman to be beneficial for n-gram smoothing [8]. 

In the remainder of this section, we present an introduction to maximum entropy modeling 
and discuss why smoothing ME models is necessary. In Section 2, we introduce n-gram language 
models and summarize previous work on smoothing these models. We list the desirable properties 
of smoothing algorithms observed by Chen and Goodman. In Section 3, we introduce maximum 
entropy n-gram models and discuss their relationship with conventional n-gram models. In Sec- 
tion 4, we survey previous work in smoothing maximum entropy models and in Section 5, we 
present LafFerty's Gaussian prior method. We contrast this method with smoothing algorithms for 
conventional n-gram models and show that it satisfies all of criteria of Chen and Goodman. In 
Section 6, we present results of experiments comparing a number of maximum entropy and con- 
ventional smoothing techniques on n-gram language modeling. Finally, in Section 7 we discuss our 
conclusions. 

1.1     Maximum Entropy Modeling 

Consider the task of estimating a probability distribution q{x) over a finite set x G Q given some 
training data set X — {xt,. ..,XN}. Intuitively, our task is to find a distribution q(x) similar to 
the empirical distribution p{x) given by the training data 

p(x) = 
N 

where cx{x) denotes the number of times x occurs in X and where iV is the size of the X. In the 
extreme case, we can take q{x) to be identical to p(x), but this will typically lead to overfitting to 
the training data. Instead, it would be better to require that q(x) match only those properties of 
p(x) that we deem to be significant and that can be reliably estimated from the training data. 



For example, consider x = (wi,w2) where wx and w2 are English words, and let the training 
data X be the list of consecutive word pairs, or bigrams, that occur in some large corpus of English 
text. Thus, the task is estimating the frequency of English bigrams. Consider a bigram that does 
not occur in the training data, say PIG DOG. We have p(piG DOG) = 0, but intuitively we want 
q(p\G DOG) > 0 since this bigram has some chance of occurring. This is an example of a property 
ofp(x) that we do not deem significant and thus do not want to match exactly with q(x). However, 
let us assume that we observe that the word THE occurs with frequency 0.05 in the training data, 
i.e., 

^ J>(THE w2) — ^2P{WI THE) = 0.05   . 

Because of the abundance of the word THE, this is presumably an accurate estimate of this fre- 
quency and it seems reasonable to require that our selected distribution q(x) satisfies the analogous 
constraint 

]Pg(THE W2) = X^(Wl THE) = °-05    • W 

More generally, we can select a number of nonnegative random variables or features f = 
{fi(x),...,fF(x)} and require that the expected value of each feature over the model q(x) is 
equal to that of the empirical distribution p{x): 

X)?(s)/,-(3) = £#*)/.■(*)>   i = h---,F   . (2) 
X X 

The constraint expressed in equation (1) can be expressed with two such features, 

, , ,       f  1    if Wj = THE 
fi(w) = [ 0   otherwise 

for j = 1,2. 
The constraints given in equation (2) do not generally specify a unique model q(x), but a set 

of models Q,-. The maximum entropy principle states that we should select the model q(x) e Qj- 

with the largest entropy H(q) = - Y.x <l(x) l°£<l{x) [9]- Intuitively, models with high entropy are 
more uniform and correspond to assuming less about the world. The maximum entropy model can 
be interpreted as the model that assumes only the knowledge that is represented by the features 
derived from the training data, and nothing else. 

The maximum entropy paradigm has many elegant properties [2, 3]. The maximum entropy 
model is unique and can be shown to be an exponential model of the form 

I F 

qym{x) = -=- exp(^ Xifi(x)) (3) 
ZA        i=i 

where ZA = J2X exP(J2(=i ^ifi(x)) is a normalization factor and A = (Ax,..., XF) are the parame- 
ters of the model. Furthermore, the maximum entropy model is also the maximum likelihood model 
in the class of exponential models given by equation (3).1 Finally, the log-likelihood of the training 

'These properties hold when constraining feature expectations to be equal to those found on a training set. When 
constraining expectations to alternate values, the maximum entropy model will not be the maximum likelihood model, 
and the ME model will not exist if the constraints are inconsistent. 



data is concave in the model parameters A, and thus it is relatively easy to find the unique maxi- 
mum entropy/maximum likelihood model using algorithms such as generalized iterative scaling [10] 
or improved iterative scaling [3]. 

While models with high entropy tend to be rather uniform or smooth and we may only constrain 
properties of q(x) we consider significant, a maximum entropy model can still overfit training data 
even with small numbers of constraints. For example, consider constraints on the frequency of the 
word MATEO and the bigram SAN MATEO, and assume that the word MATEO only occurs after 
the word SAN in the training data. Then, we will have 

^q(wi MATEO) = ^2p(wi MATEO) =^(SAN MATEO) 
Uli Wl 

and 
§(SAN MATEO) = P(SAN MATEO) 

which implies q(wi MATEO) = 0 for all u>i ^ SAN. Intuitively, we want q(x) > 0 for all x £ £2 since 
all bigrams have some chance of occurring. Zero probabilities lead to infinite loss in log-loss objective 
functions and can lead to poor performance in many applications, e.g., when q(x) represents a 
language model to be used in speech recognition. Thus, it is desirable to smooth maximum entropy 
models, or adjust parameter values away from their maximum likelihood estimates. 

2    Smoothing TV-Gram Language Models 

While there has been relatively little work in smoothing maximum entropy models, there has 
been a great deal of work in smoothing n-gram language models. A language model is a probability 
distribution q(s) over word sequences s that models how often each sequence s occurs as a sentence. 
Language models have many applications, including speech recognition, machine translation, and 
spelling correction [11, 12, 13]. 

For a word sequence s = w\ ■ • -wi, we can express its probability Pr(s) as 

Pr(s)    =    Pr(wj) x Pr(w2\w1) x • • • X Pr(wi\w1 ■ ■ ■ wi-i) X Pr(END|wi ■■■wi) 
l+i 

=    JJPr(w,-|u;i ■■■wi-1) 
j=i 

where the token wi+i — END signals the end of the sentence. The most widely-used language 
models, by far, are n-gram language models. In an n-gram model, we make the approximation that 
the identity of a word depends only on past words through the identity of the last n - 1 words, 
giving us 

l+i l+i 
Pr(s) = JJ Pr(«7j|toi • • • w,-_i) « J| Pr(wi|w*:(

1
n_1)) 

j=i i=i 

where the notation w\ denotes the sequence Wi ■ ■ -Wj and where w_n+2,..., w0 are all taken to be 
some distinguished beginning-of-sentence token. 

The maximum likelihood estimate qMh(wi\wlzL-i\) of the probabilities Pr(w2|-u;*~(
1
n_1s) over 

some training data X can be calculated by simply counting how often the token Wi follows the 



history or context w1
i_}_1>. and dividing by the total number of times the history occurs, i.e., 

,    ,   ,--i       x      ex(«;{_(„_!)) <*(«;;'_(„_!)) 

However, the maximum likelihood estimates of these probabilities typically lead to overfitting, and 
instead it is desirable to use smoothed estimates of these values. For example, one simple smoothing 
technique is to linearly interpolate the maximum likelihood estimate of the n-gram probability 
qML(wi\wlZ}n-i)) 

witn an estimate of the (n - l)-gram probability Pr(w;|itf-~(n_2)) [14, 15]: 

qint{wi\w^_1)) = XqMh(wi\wlZln_1)) + (l-X)qint{wi\wlZln_2)),    0<A<1    . (4) 

The lower-order estimate can be defined analogously, and the recursion can end with a unigram 
or uniform distribution. Since the lower-order distributions are less sparsely estimated from the 
training data, their interpolation generally reduces overfitting. A large number of other smoothing 
methods for n-gram models have been proposed, e.g., [16, 8, 14, 17, 18, 19]. 

We present a brief overview of past work in n-gram model smoothing. One basic observation is 
that the maximum likelihood estimate of the probability of an n-gram that does not occur in the 
training data is zero and is thus too low, and consequently the ML probabilities of n-grams with 
nonzero counts are generally too high. This dichotomy motivates the following framework for ex- 
pressing smoothing methods, which can be used to express most existing smoothing techniques [18]: 

/    i   .-1      ,_(«KK(n-i)) if <*(«;{_(„_!)) >0 
fcm(t*K_(»-i)) - | 7(«;i:(

1
B_1))ftinK|«;,t(»-2))    if <*M'-(n-i)) = °      ' 

That is, if an n-gram w\_,^ occurs in the training data, the estimate a(Wi|wj~L_i)) is used; 
this estimate is generally a discounted version of the maximum likelihood estimate. Otherwise, 
we back off to a scaled version of the (n - l)-gram distribution gSm(^i|u;]I(1„_2))' wnere tne lower- 
order distribution is typically defined analogously to the higher-order distribution. The scaling 
factor j(w^z}n_i\) is chosen to assure that each conditional distribution sums to 1. The algorithm 
described by equation (4) can be placed in this framework with the following relations: 

a(wi\w[ 

TK 

_(„_!))    =    9int(«'i|ti;)_(
1
n_1)) 

(n-1))      = =   1-A 

Z(n_2))      =     <7intKHZ(n-2)) 

There are three primary distinctions between smoothing algorithms: whether an algorithm is 
interpolated or backed-off, what type of discounting is applied to the ML estimate to calculate 
a{wi\w'l~)n_lC), and how lower-order distributions are computed. 

In interpolated models, the probability estimate Oi(wi\w'l~)n_XJ of an n-gram w]_^n_^ with 

nonzero count depends on the probability assigned to the corresponding (n - l)-gram w\_^n_2y as 
in equation (4). In backed-off models, the probability estimate of an n-gram with nonzero count is 
determined while ignoring information from lower-order distributions. Interpolated models include 
Jelinek-Mercer smoothing [14] and Witten-Bell smoothing [16]; backed-off models include Katz 
smoothing [17], absolute discounting [19], and Kneser-Ney smoothing [18]. 



To describe the different types of discounting, we write a(wi\wl
i_}_1)) as 

(      I     i-l X CxW-(n-l)) ~ dH-(n-l))    ,    a(    i , a[wi\w   ,    .,   = ^—; - — + 3(w-  i    ,0 

where d(^_,n_1j) can be viewed as the discount in count space from the ML estimate and where 

ßiwi-in-i)) is the contribution from lower-order distributions. The value ß(wt
i,n_1^) is zero for 

backed-off models and typically 7{wl^}_1^qsm(wi\w\z\n_2\) f°r interpolated models. In linear 

discounting, the discount d(w\,n_l.) is taken to be proportional to the original count cx{w\,n_l-,), 

as in equation (4) where the discount is {l-X)-cx(wl
i_,_1X In absolute discounting, d{w\_,_1C) is 

taken to be a constant 0 < D < 1. In Good-Turing discounting, the discount is calculated using the 
Good-Turing estimate [20], a theoretically-motivated discount that has been shown to be accurate 
in non-sparse data situations [17, 21]. A brief description of the Good-Turing estimate is given in 
Section 4.1. Jelinek-Mercer smoothing and Witten-Bell smoothing use linear discounting; Kneser- 
Ney smoothing uses absolute discounting, and Katz smoothing and Church-Gale smoothing [21] 
use Good-Turing discounting. 

The final major distinction between smoothing algorithms is how the lower-order probability es- 
timates are calculated. While most smoothing methods define the lower-order model qsm(wiW~)n_2C) 

analogously to the higher-order model qsm{wi\wl~]n_l,), in Kneser-Ney smoothing a different ap- 
proach is taken. The (n — l)-gram model is chosen to satisfy certain constraints derived from the 
training data, namely 

E c^K:(n_i))?8m(tü>j:(
1
n_1)) = cJfK'_(n_2)) (6) 

for all (n — l)-grams w\,_2y This constraint can be rephrased as: The expected number of times 
wi_(n_2) occurs in the training data given the model qSm(wi\wt

iz}n_1\) and the history frequencies 
cx(^Z(n_1)) should equal the actual number of times it occurs. Kneser-Ney smoothing can be 
applied recursively to lower-order distributions, in which case the constraints (6) are not satisfied 
exactly. Instead, the right-hand side of the constraints are discounted with absolute discounting. 

Chen and Goodman [8] provide an extensive comparison of all of the widely-used smoothing 
techniques. They evaluate each algorithm on a wide range of training sets through its perplexity on 
test data. The perplexity PP?(X') of a model q on a test set X' is the reciprocal of the geometric 
average probability that the model assigns to each word in the test set. They also use the derivative 
measure cross-entropy Hq{X') = log2PPg(X'), which can be interpreted as the average number of 
bits needed to code each word in the test set using the model q. Chen et al. [8, 22] also conducted 
experiments investigating how the cross-entropy of a language model is related to its performance 
when used in a speech recognition system. They found a strong linear correlation between the two 
metrics when comparing models that only differ in smoothing. 

In terms of perplexity, Chen and Goodman found that Kneser-Ney smoothing and variations 
consistently outperform all other algorithms. More specifically, they present four main conclusions: 

• The factor that affects performance the most is the use of a modified lower-order distributions 
as in Kneser-Ney smoothing. This is the primary reason for the excellent performance of this 
algorithm. 



5 7 9 
original count 

11 13 

Figure 1: Ideal average discount for n-grams with given count in training data for 1 million word 
training set and 200 million word training set, bigram and trigram models 

• Absolute discounting is superior to linear discounting. For n-grams with a given count r in 
the training data, they calculate the average discount in count space d(w\_, _1j) from the 
ML estimate that would cause the expected number of these n-grams in a test set to be equal 
to their actual number (assuming ß{w\,n_^) = 0). This ideal average discount is displayed 
in Figure 1 for counts r < 13 for two training sets for bigram and trigram models. From this 
graph, we see why a fixed discount works well. While Good-Turing discounting is actually 
better than absolute discounting at predicting the average discount, it has yet to be used in 
such a way as to predict the correct discounts in individual distributions well. 

• Interpolated models outperform backed-off models when considering performance on just n- 
grams with low counts in the training data. This is because lower-order models provide 
valuable information for estimating the probabilities of n-grams with low counts. 

• Adding free parameters to an algorithm and optimizing these parameters on held-out data 
can improve the performance of an algorithm. 

Based on these observations, Chen and Goodman propose an algorithm named modified Kneser- 
Ney smoothing that is found to outperform all other methods considered. It is an interpolated 
variation of Kneser-Ney smoothing with an augmented version of absolute discounting. Instead of 
using a single discount D for all n-grams, three separate discounts D\, D2, and D34. are used for 
ra-grams with one count, two counts, and three or more counts, respectively. This is motivated by 
the observation that the ideal discount for one-counts and two-counts is significantly smaller than 
the ideal discount of larger counts, as shown in Figure 1. 

3    Maximum Entropy iV-Gram Models 

We can construct language models very similar to conventional n-gram models within the maximum 
entropy framework. The maximum entropy models described in Section 1.1 are joint models; to 
create the conditional distributions used in conventional n-gram models we use the framework 
introduced by Brown et al. [23]. Instead of estimating a joint distribution q{x) over samples x, we 



estimate a conditional distribution q(y\x) over samples (x,y). Instead of constraints as given by 
equation (2), we have constraints of the form 

Y^p{x)q{y\x)fi(x,y) = J2P(x^y)Mx^y)   ■ (7) 
x,y x,y 

This can be interpreted as replacing q(x,y) in the joint formulation with p(x)q(y\x).   That is, 
we assume that history frequencies p(x) are taken from the training data, and we only estimate 
conditional probabilities.    Conditional ME models share many of the same properties as joint 
models, including being maximum likelihood models, and have computational and performance 
advantages over joint models in language modeling [24, 5]. A conditional maximum entropy model 
has the form 

1 F 

quE{y\x) = •yry^expCTlWi(x,y))    . (8) 
ZA(X)      fri 

To construct a maximum entropy n-gram model, we take x = i^lL^ to be the history and 

y = Wi to be the following word. For each m-gram 9 — w\_im_1\ with m = 1,..., n that occurs in 
the training data, we include a constraint that forces the conditional expectation of 6 according to 
q to be the same as its frequency in the training data. The corresponding features fe(x, y) are 

[0   otherwise 

Substituting these features into equation (7) and simplifying, we arrive at constraints of the form 

£ PK:(V1))?K>::(
1,-I))=^) • (9) 

w'   ,     ,. :su8ix(w'   ,     ,»)=# 
i — (n — 1) v    i — (n— 1) ' 

In fact, the only solution to these constraints is q(y\x) = qMh(y\x)- Consequently, the maximum 
entropy model is identical to the maximum likelihood n-gram model and it will be beneficial to 
smooth the estimates of the model parameters A = {A#}. 

Remarkably, the set of models given by equation (8) with n-gram features is identical to the set 
of models described by equation (5), which we used to express most existing smoothing algorithms 
for conventional n-gram models. To see this, let us define a set of m-gram models #ME {wi\w\~l(m-\\) 
for TO = 1,..., n as in equation (8), where each m-gram model only contains features corresponding 
to word sequences up to length TO, and where all models share the same parameter set A. Then, 
to describe the maximum entropy model form in terms of equation (5), we take 

aK-K_(n_i))    =    9ME(tO,»_(„_i)) 

eMK'-^] X ZA(tA"   ) X «ME^>M«-a) 

,-1 ,      _      W"tln-2)) y(wAwi  ,    1X)    =     ^-|  

äm(^>-Z(n-2))     =     9MEKK:(n_2)) 



For any model of the form (5), we can choose Xg using the above equations starting from lower- 
order models to higher-order to construct an equivalent exponential model.2 Because smoothing Xg 
estimates in maximum entropy n-gram models and smoothing conventional n-gram models both 
consider the same class of models, these two tasks are closely related. 

4    Smoothing Maximum Entropy Models 

In this section and Section 5, we survey previous work in maximum entropy model smoothing. 
Here, we discuss Good-Turing discounting, fuzzy maximum entropy, and fat constraints; in the 
following section, we present the Gaussian prior method proposed by Lafferty. In describing these 
methods, we sometimes use the joint maximum entropy formulation for simplicity. All of these 
techniques apply equally well to conditional ME models; the analogous conditional ME equations 
can be derived by replacing x with (x,y) and q{x) with p{x)q{y\x). 

4.1     Good-Turing Discounting 

Good-Turing discounting has been proposed by Lau [7] and Rosenfeld [5] and can be viewed as 
the maximum entropy analog to Katz smoothing for conventional n-gram models. They observe 
that the marginals of the model q{y\x) should not be constrained to be exactly those of the empir- 
ical distribution p(y\x), but instead target values should be discounted as in conventional n-gram 
smoothing. Instead of constraints as given by equation (9), they propose the following constraints 

E pK-(1„_i))?K>!:(
1
n_1)) = PGTW 

w'   .     ,,:suffix(«;*   ,      , >)=# i — (n—1) v    i — [n — 1) ' 

where par (0) is the Good-Turing estimate of the frequency of 6. 
The Good-Turing estimate [20] is a theoretically motivated method for estimating the average 

discount for an event based on its count in the training data. For an event that occurs r times in 
iV samples, in contrast with the maximum likelihood estimate jj, the Good-Turing estimate of the 

event's true frequency is j^ where 
*      nr+l ,    .  ,,. r   = —— (r + 1) 

nr 

and where nr is the number of members of the population with exactly r counts. Katz [17] suggests 
applying this estimate to each joint ra-gram distribution, m = 1,.. .,n, separately. Furthermore, 
as nr can be very low or zero for large r, Katz proposes a method where n-grams with large counts 
are not discounted and discounts for low counts are adjusted to compensate.  Lau and Rosenfeld 
use the Katz variation of Good-Turing discounting. 

However, when constraining marginals of a model to Good-Turing discounted marginals of the 
training data, the constraints may no longer be consistent and a maximum entropy model may 
not exist. For example, in a trigram model consider features that constrain the frequencies of the 
n-grams TIC TAC TOE and TAC TOE and assume that the word TAC only follows the word TIC in 
the training data. Then, we will have the constraints 

p(TlC TAC)g(TOE|TIC TAC) =pGT(TIC TAC TOE) 

2The equivalence is not exact as exponential models cannot express probabilities equal to zero or one. In addition, 
for the equivalence to hold the unigram model given by equation (5) must assign the same probability to all words 
not occurring in the training data. This is generally the case with existing smoothing algorithms. 



and 

^2 Viwi-2 TAC)^(T0E|U;,-_2 TAC) = p(TIC TAC)g(TOE|TIC TAC) = PQT(TAC TOE)    . 

In general, we will have PGT(TIC TAC TOE) ^ |>GT(TAC TOE) since discounts for n-grams of different 
length are calculated independently; consequently, these constraints will be inconsistent. In prac- 
tice, there are no dire consequences to having inconsistent constraints. While training algorithms 
such as iterative scaling may not converge, a reasonable procedure is to stop training once perfor- 
mance on some held-out set stops improving. However, inconsistency is symptomatic of constraints 
that will lead to poor parameter estimates. 

Lau [7] compares the performance of Good-Turing discounting for smoothing ME n-gram models 
with deleted interpolation [14], a variation of Jelinek-Mercer smoothing, for conventional n-gram 
models. For a 5 million word training set of Wall Street Journal text, deleted interpolation yielded a 
perplexity of 225 on a 870,000 word test set. The maximum entropy model yielded a slightly superior 
perplexity of 221, where all n-grams that occurred only once in the training data were excluded 
from the ME model. However, later results by Chen and Goodman [8] strongly indicate that other 
smoothing methods for conventional n-gram models, such as modified Kneser-Ney smoothing, would 
outperform deleted interpolation by a much larger margin. 

4.2    Fuzzy Maximum Entropy 

In the fuzzy maximum entropy framework developed by Delia Pietra and Delia Pietra [25], instead 
of requiring that constraints are satisfied exactly, a penalty is associated with inexact constraint 
satisfaction. Finding the maximum entropy model is equivalent to finding the model q(x) satisfying 
the given constraints that minimizes the Kullback-Leibler distance D(q || pUnif) from the uniform 
model Pumt(x). In fuzzy maximum entropy, the objective function is taken to be 

D(q\\punif) + rU(q) (10) 

where U(-) is a penalty function minimized when constraints are satisfied exactly and r is a weight- 
ing parameter. Delia Pietra and Delia Pietra suggest a penalty function of the form 

lA  1 tf(*) = «£ 2<Hu, i-\ 

^?(a;)/i(x)-^p(a;)/i(a 

This penalty function can be interpreted as the logarithm of a Gaussian distribution with diagonal 
covariance centered around the target constraint values. The variance a\ associated with feature 
fi(x) can be estimated from the empirical distribution of /;(#) in the training data. Delia Pietra 
and Delia Pietra describe a variant of generalized iterative scaling that can be used to find the 
optimal model under this objective function [26]. 

We can interpret this algorithm from the viewpoint of maximum a posteriori (MAP) estimation. 
In MAP estimation, we attempt to find the model q with the highest posterior probability given 
the training data X: 

argmaxPr(g|X) = argmaxPr(g)Pr(X|</) = argmax[logPr(g) + logPr(X|g)]    . (11) 
9 9 9 



The MAP objective function has two terms, a prior term log Pr(g) and a likelihood term log Pr(X\q). 
The fuzzy ME objective function given in equation (10) is analogous to the MAP objective function. 
The first term in equation (10) encourages the model q to have high entropy, and can be thought of 
as taking the role of a prior distribution favoring more uniform models. The second term encourages 
q to satisfy the given constraints, i.e., to fit the training data well. This term plays a similar role as 
the likelihood term in MAP estimation. However, both terms in the fuzzy ME objective function 
are very different than their MAP counterparts. In Lafferty's Gaussian prior method to be discussed 
in Section 5, a traditional MAP objective function is used, and we contrast the two approaches in 
that section. 

Lau [7] constructed a fuzzy maximum entropy n-gram model excluding all n-grams with only 
one count using the data sets described in Section 4.1, yielding a perplexity of 230. This is slightly 
worse than the perplexities achieved by the deleted interpolation and Good-Turing discounted ME 
models. 

4.3    Fat Constraints 

Other methods for relaxing constraints include work by Newman [27] and Khudanpur [28]. In these 
algorithms, instead of selecting the maximum entropy model over models q(x) that satisfy a set of 
constraints exactly, they only require that the given marginals of q(x) fall in some range around 
the target values. Newman suggests a constraint of the form 

F 

Ew< 
i=l 

T2 

^2q(x)fi(x)-J2p(x)fv <a2 

with feature weights W{ for the task of estimating power spectra. Khudanpur suggests constraints 
of the form 

Oii < ^q{x)fi{x) < ßi,   i=l,...,F   . 
X 

Both of these approaches can be viewed as instances of the fuzzy maximum entropy framework. 
Instead of a smooth function, the penalty U(q) is taken to be zero if q satisfies the relaxed constraints 
and infinite otherwise. These types of methods have yet to be applied to language modeling. 

5    A Gaussian Prior 

Lafferty [1] proposes applying a Gaussian prior on the parameters A to smooth maximum entropy 
models. This technique has been applied previously in [6]. Recall that a maximum entropy model 
is the maximum likelihood model among the set of models given by equation (3). By perform- 
ing maximum a posteriori instead of maximum likelihood estimation, we can apply a Gaussian 
prior centered around A = 0 to smooth the ML model toward the uniform model, thus hopefully 
ameliorating overfitting. 

More precisely, we can equate finding the maximum entropy model with finding parameters A 
that maximize the log-likelihood Lx (A) of the training data X 

Lx(A) = ]Cp(a;)log?A(aO    • 
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With the Gaussian prior, which we take to have diagonal covariance, our objective function L'X{A) 
then takes the form given in equation (11), 

L'x(\)   =   Lx(A) + ^2\og-rL=exp(-^) (12) 
'27TCT/ ZC7i 

F     A2 

=   Lx(A)-£-^ + const(A)   , (13) 

where the of are the variances of the Gaussian. 
We contrast this objective function with the objective function in equation (10) for fuzzy max- 

imum entropy. Both functions have two terms, one which prefers models that are more uniform 
and one which prefers models similar to the training data. In the Lafferty framework, the term 
that prefers models similar to the training data is a log-likelihood value, while the analogous term 
in fuzzy ME is a sum of squared constraint errors. The suitability of either function ultimately 
depends on the application. However, for language modeling it has been found that likelihood, or 
the derivative measure perplexity, is a useful performance metric. 

As to the Gaussian prior method used in the Lafferty framework, the analogous term in fuzzy 
ME that favors more uniform models is D(q || pUnif)- The former function penalizes models that 
have many large A; values, while the latter function penalizes models far from uniform. While the 
correct function to use will again depend on the application, we argue that the former function 
is generally more appealing. For example, a model with a single nonzero A, parameter should 
intuitively receive a small penalty, regardless of how far from uniform this model is. Thus, we 
hypothesize that the Gaussian prior method is preferable to fuzzy maximum entropy. 

The Gaussian prior method adds little computation to existing maximum entropy training 
algorithms. Since the logarithm of the Gaussian prior is concave, the objective function is still 
concave in A and it is reasonably easy to find the optimal model. We can make a simple modification 
to improved iterative scaling [3] to find the MAP model. The original update of each A; in this 
algorithm is to take 

Ai'+1) <-*!*> + #> 

where <5- ' satisfies the equation 

£j5(*)/,-(s) = Y,qA{t)(x)Mx)exp(5lt}f*(x)) (14) 
X X 

and where /*(#) = Y^,ifi(x)- With the Gaussian prior, equation (14) is replaced with 

£jS(s)/.-0c) = J2 gA(t) (x)fi(x) exp(SPf*(x)) + A*   + 6i      . (15) 
xx i 

As the right-hand side of this equation is strictly monotonic in S\', it is relatively easy to find its 
solution using a search algorithm. We derive this modified update rule in the appendix. 
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5.1     The Gaussian Prior Method and Conventional iV-Gram Smoothing 

In Section 2, we listed four factors that were found by Chen and Goodman to significantly affect 
n-gram smoothing performance. It is informative to assess the Gaussian prior method according 
to these four criteria. 

First, they point out that the modified lower-order distributions of Kneser-Ney smoothing is the 
primary reason for its superiority among conventional n-gram smoothing algorithms. Recall that 
these distributions are chosen to satisfy marginal constraints as given in equation (6). However, 
this set of constraints is identical to the corresponding maximum entropy constraints for (n — 1)- 
grams, as given by equation (9). Thus, maximum entropy n-gram models have similar modified 
lower-order distributions as in Kneser-Ney smoothing. 

However, MAP models under the Gaussian prior no longer satisfy the ME constraints exactly. 
Instead, the constraints that are satisfied have the form 

£#*)/.-(*)-^ = £?A(s)yi(s) • (i6) 
x i x 

That is, the empirical expectations J2xP(x)fi(x) are now "discounted" by the amount A,-/of. (In 
ME n-gram models, most A,- are positive.) Qualitatively, this is even more desirable than meeting 
the targets exactly, as empirical frequencies tend to be higher than true frequencies for events 
with nonzero counts. Analogous behavior is produced with Kneser-Ney smoothing when applied 
recursively to lower-order distributions. In this case, target counts are discounted through absolute 
discounting. A derivation of equation (16) is given in the appendix. 

Second, Chen and Goodman point out that absolute discounting is superior to the other types 
of discounting considered, and that using a different discount for one-counts and two-counts and 
a flat discount thereafter as in modified Kneser-Ney smoothing performs even better. With the 
Gaussian prior, the discount for an n-gram 0 is linear in Xg as can be seen from equation (16). 
As the probability assigned to 0 by gA grows exponentially in Xg, Xg grows logarithmically as a 
function of the target probability or count. In other words, roughly speaking the Gaussian prior 
method translates to logarithmic discounting. This is a qualitatively appealing model of the ideal 
average discount displayed in Figure 1 and is more elegant than using multiple flat discounts.3 

Third, Chen and Goodman report that interpolated models outperform backed-off models on 
n-grams with low counts, as lower-order models provide valuable information for estimating these 
probabilities. Happily, the Gaussian prior behaves like an interpolated model as n-gram probability 
estimates depend on lower-order information. This follows trivially from the observation that the 
probability q\ assigns to an n-gram 0 depends on the parameter values Xgi for all n-grams 0' that 
are suffixes of 0. However, the Gaussian prior method uses the information from lower-order models 
in a meaningful way. For any n-gram 0, the Gaussian prior method tends to adjust Xg towards 
zero; when Xg is zero, the corresponding feature has no effect on the model, and the lower-order 
n-gram probability estimate is used. In other words, the prior adjusts n-gram probabilities towards 
the lower-order probability estimate, as is desirable. 

Finally, Chen and Goodman note that additional tunable parameters can improve current 
smoothing methods.   For the Gaussian prior, the natural free parameters are the variances CT,-. 

We can contrast a Gaussian prior on A parameters with previous work in n-gram smoothing where priors have 
been applied directly in probability space. MacKay and Peto [29] use a Dirichlet prior and Nädas [30] uses a Beta 
prior, both resulting in linear discounting which has been shown to perform suboptimally. 
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In the basic version of the Gaussian prior method that we implemented, we had n free parameters 
am, m = 1,..., n, where all m-grams of the same length were constrained to have the same variance 

As the Gaussian prior method satisfies all of the desiderata listed by Chen and Goodman, it 
may perform competitively in n-gram smoothing. The experiments in Section 6 show that this is 
indeed the case. 

6    Experiments 

To compare the performance of maximum entropy and conventional n-gram smoothing techniques, 
we ran experiments over many training set sizes using several different text corpora for both bigram 
and trigram models. 

6.1    Methodology 

Of the conventional n-gram smoothing techniques, we implemented Katz smoothing [17], which is 
perhaps the most popular algorithm in practice, and modified Kneser-Ney smoothing [8], which 
has been shown to outperform all other widely-used techniques. In addition, we implemented the 
variation of Jelinek-Mercer smoothing given by equation (4) where instead of a single A parameter 
a different Am is used for each level of the n-gram model. This method does not perform partic- 
ularly well, but is used as a baseline algorithm for expository purposes. We refer to these three 
implementations with the mnemonics katz, kneser-ney-mod, and baseline, respectively. 

We also implemented several maximum entropy smoothing techniques. For each technique, all 
Xg parameters are initialized to zero and improved iterative scaling is applied to train the model. 
Iterative scaling is terminated when the perplexity of a held-out set no longer decreases significantly. 
Cluster expansion [31] is employed to reduce computation. In the implementation ME-no-smooth, 
no smoothing is performed. (Since training is terminated when performance on a held-out set no 
longer improves, no probabilities will converge to zero as in the case where training is continued 
to convergence.) The algorithm ME-disc-katz is an implementation of Good-Turing discounting 
as described in Section 4.1. The algorithm ME-gauss is an implementation of Lafferty's Gaussian 
prior method as described in Section 5. As mentioned earlier, this method has n free parameters 
<7TO, one for each level of the n-gram model. 

We used data from four sources: the Brown corpus, which contains text from a number of mis- 
cellaneous sources [32]; Wall Street Journal (WSJ) newspaper text [33]; the Broadcast News (BN) 
corpus, which contains transcriptions of television and radio news shows [34]; and the Switchboard 
(SWB) corpus, which contains transcriptions of telephone conversations [35]. In each experiment, 
we selected a training set of a given length from one source, and two held-out sets from the same 
source. The first held-out set was used to optimize the parameters of each smoothing algorithm, 
e.g., the am parameters of ME-gauss or the discounts D* of modified Kneser-Ney smoothing. Pa- 
rameters were selected to minimize the perplexity of the held-out set; Powell's search algorithm [36] 
was used to perform this search. This held-out set was also used to decide when to terminate iter- 
ative scaling for the ME models. The second held-out set was used to evaluate the final perplexity 
of each smoothing algorithm. 

For each data source, we ran experiments using training sets from 100 sentences (about 2,000 
words) to around 100,000 sentences (about 2 million words). Held-out sets were 2,500 sentences. 

13 



11 

10 
"-*,. 

">~'*.-..^ 
• 

9, v. 
""'"V"-*.:.. 

^""•»»^^^    '•"•"'-- -WSJ 2-gram 

8 Brown 2-,3-gram          C.        ^ 

^---la....                   WSJ 3-gram' ■, 

7 
 ::-;.g SWB 2-gram 

 — -~-'.'.VQ--.... 

SWB3-eram! 

100 1000 10000 
training set size (sentences) 

Figure 2: Cross-entropy of baseline smoothing algorithm on test set over multiple training set sizes 
on Brown, Switchboard, and Wall Street Journal corpora 

While training sets for language models may reach hundreds of millions of words in practice, 
we were unable to consider larger training sets than we did due to computational limitations. 
Training maximum entropy n-gram models requires a great deal more computation than training 
conventional n-gram models. In addition, when considering multiple parameter settings in the 
Powell search (as for the am parameters in ME-gauss), the iterative scaling algorithm must be 
applied separately for each parameter setting. To train a single model using method ME-gauss for 
a 2 million word training set required around six hours of computation on a 400 MHz Pentium II 
computer. Substantially larger training sets are feasible if parameter optimization is not used. 

Our data sets are identical to those used by Chen and Goodman [8] and consequently our results 
are directly comparable to the analogous results presented by Chen and Goodman. More details 
of our methodology can be found in that work. 

6.2    Results 

In Figure 2, we display the cross-entropy of the baseline Jelinek-Mercer smoothing algorithm over 
a range of training set sizes on several corpora. In the graphs to follow, we display the performance 
of each algorithm as the difference of its cross-entropy on the test set from the cross-entropy of 
the baseline method (using the same training set), to facilitate visualization. Each point in the 
graphs presented here represents a single experiment; for an analysis of the standard error of these 
observations refer to Chen and Goodman [8]. To give a rough idea of the statistical error involved, 
in Figures 4 and 5, the difference between kneser-ney-mod and ME-gauss may not be significant, 
while the difference between these two algorithms and all of the others almost certainly is for almost 
every data point. 

In Figure 3, we compare the performance of the various maximum entropy smoothing algorithms 
over multiple training set sizes using Wall Street Journal data. The left graph is for bigram models 
and the right graph is for trigram models. We see that ME-no-smooth is outperformed by the other 
algorithms by a large margin, demonstrating the necessity of smoothing for maximum entropy 
models. Of the remaining algorithms, the Gaussian prior method significantly outperformed Good- 
Turing discounting. Though not shown here, we see similar behavior in experiments on the other 
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Figure 3: Performance relative to baseline of various maximum entropy smoothing algorithms over 
multiple training set sizes on the Wall Street Journal corpus, bigram and trigram models 

three corpora.4 

In Figures 4 and 5, we compare the performance of maximum entropy smoothing algorithms with 
conventional n-gram smoothing algorithms over several corpora.5 Of the conventional smoothing 
methods, we see that Katz smoothing generally outperforms the baseline and that modified Kneser- 
Ney smoothing is significantly better. Of the maximum entropy methods, we see that ME-disc-katz 
performs comparably to Katz smoothing for bigram models, and somewhat worse for trigram 
models, though it does better on larger data sets. The method ME-gauss performs about as well 
as modified Kneser-Ney smoothing, and is slightly better over most data sets. Thus, the Gaussian 
prior method performs as well as or better than all other widely-used algorithms for smoothing 
n-gram models. 

To investigate how the logarithmic discounting of the Gaussian prior compares to the multiple 
absolute discounts of modified Kneser-Ney smoothing, we computed how closely the expected num- 
ber of certain n-grams in a test set according to each model matched the actual number of those 
n-grams in the test set. In particular, for all n-grams occurring r times in a 750,000 word training 
set X for some r, we computed the ratio of the expected number of times these n-grams occurred 
in a 10,000,000 word test set X' to the actual number of times they occurred: 

£*»;'_(„_,) «*«(„-,) )=' °X' (W.*-(n-l)) 

These ratios are displayed for r < 40 in Figure 6 for bigram and trigram models. The Gaussian 
prior achieves ratios closer to the ideal value of one than modified Kneser-Ney smoothing for most r, 
which is evidence that the Gaussian prior method is superior to multiple flat discounts at predicting 
correct average discounts. 

We also investigated how the number of independent variance parameters used with the Gaus- 
sian prior affects performance.   In the original implementation ME-gauss, a different am is used 

4We also ran experiments using complemented n-grams [5], where each n-gram feature is nonzero only when no 
longer n-gram feature is nonzero. This resulted in significantly inferior performance. 

sThe large spikes in the Switchboard graphs are discussed by Chen and Goodman [8], They are caused by a 
duplicated segment of text in the corresponding training set. 
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Figure 4: Performance relative to baseline of various smoothing algorithms over multiple training 
set sizes on the Broadcast News and Brown corpora, bigram and trigram models 

16 



relative performance of algorithms on Switchboard corpus, 2-gram relative performance of algorithms on Switchboard corpus, 3-gram 

I 

0.05 - 

0 

0.05 

* 

/'/ 

! \ /     \ 
A.      \ 

/ katix  V ~~ 
-0.1 

ME-disc-katz 

// 
^ 

0.15 

-0.2 
_kneser-ney- mod^..---''' 

ME-gauss , 
10 1000 10000 100000 

training set size (sentences) 

relative performance of algorithms on WSJ corpus, 2-gram 

ME-disc-katz.: 

'&::.-..,kneser-ney-mod ,.-.-•■ 

ME-gauss 

J3 

/ME-disc-katz 
.   ..._.^ 

0.05 \ \   ■ 

0 

-0.05 

baseline       / 

\ \ 
katz 

-0.1 - 
-0.15 ; 

-0.2 

L::"" ->"■;;--. ^kneser 
■B ~~ 

-ney-mod  h  --. .::*"V-J 

0.25 ME-gauss - 

0 1000 10000 100000 
training set size (sentences) 

relative performance of algorithms on WSJ corpus, 3-gram 

3        0.05  ; 

-0.05 

-0.1 

-0.15 

-0.2 

-0.25 

-0.3 

c^^ 
'"" - \ME-disc-katz \ 
\ 
 -\ " 

ME-gauss katz^^^ 

■"            :'-:si~^ 

- "'**.-. 
. ''V":&->, 

- 
':';--.,kneser-ney-mod      mi 

- ... i , 
1000 10000 

training set size (sentences) 
100000 100 1000 10000 

training set size (sentences) 

Figure 5: Performance relative to baseline of various smoothing algorithms over multiple training 
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Figure 7: Performance relative to baseline of different parameterizations of Gaussian prior over 
multiple training set sizes on the Wall Street Journal corpus, bigram and trigram models 

for each level of the n-gram model.6 We also considered using a single a over the whole model 
(ME-gauss-1), and using three parameters <7TO,i, om^i and <7mj3+ for each level of the n-gram model, 
to be applied to m-grams with 1, 2, or 3 or more counts in the training data, respectively. This 
latter parameterization (ME-gauss-3n) is analogous to the parameterization of modified Kneser- 
Ney smoothing. The performance of these three variations on the Wall Street Journal corpus is 
displayed in Figure 7. The variations ME-gauss and ME-gauss-3n yield almost identical perfor- 
mance, and the variation ME-gauss-1 performs slightly worse.7 As having separate variances for 
each n-gram level leads to improved performance, this is a useful distinction to make. We also 
investigated many other parameter-tying schemes, but none significantly outperformed this simple 
technique. 

7    Discussion 

It has been argued that maximum entropy models do not require smoothing because they are 
already as uniform or smooth as possible given the constraints. However, maximum entropy models 
can be viewed as maximum likelihood exponential models, and have similar properties as other 
maximum likelihood methods. For example, as can be seen in Figure 3, when data is plentiful, 
smoothing has a smaller effect, and when data is sparse, smoothing is essential. 

In many tasks including language modeling, it has been found that superior performance can 
be achieved by constructing very large models (so parameters are sparsely estimated) and then 
smoothing them. Thus, for maximum entropy models to be competitive with other techniques in 
these domains, we need effective maximum entropy smoothing algorithms. 

In this work, we showed that a Gaussian prior can be used to smooth maximum entropy 
n-gram models to achieve performance equal to or superior to that of all other techniques for 

6 The optimal variances Na2
m for the Gaussian prior found by the Powell search were mostly in the range 1.5 < 

No2
m < 5, where N is the size of the training set. Multiplying by N converts the variances from probability space 

to count space, and discounts are relatively constant in count space over different training set sizes. The discounts 
tended to grow with data set size and shrink with m. 

' The reason that a variation with more parameters may not outperform a variation with fewer parameters is due 
to search errors in parameter optimization. 
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smoothing n-gram models, a field which has an extensive body of associated research. This is 
the first clear demonstration that a maximum entropy smoothing method can be as effective as 
smoothing techniques for other types of models, and makes it possible to construct maximum 
entropy models in sparse data situations without loss of performance. Furthermore, it adds virtually 
no computational cost to the maximum entropy training procedure. However, because of the large 
underlying computational cost of maximum entropy algorithms, building maximum entropy models 
for very large data sets is still a challenging problem. 

While this smoothing method can be expressed very simply, we show that it possesses all of 
the desirable qualities of n-gram smoothing noted by Chen and Goodman from empirical analysis. 
In addition, it achieves its excellent performance using fewer parameters than the comparably 
performing modified Kneser-Ney smoothing. 

The Gaussian prior and the Kneser-Ney methods consistently outperform other smoothing tech- 
niques. The distinction between these algorithms and the others is their use of modified lower-order 
distributions as described in Sections 2 and 5.1. These distributions are chosen to satisfy certain 
marginal constraints derived from the training data. Thus, the use of marginal constraints may be a 
powerful technique for designing novel smoothing algorithms, whether for language modeling or for 
other domains. Enforcing marginal constraints would mark a significant departure from traditional 
techniques used in smoothing. 

In addition, the Gaussian prior is a qualitatively different prior than has been used previously 
in n-gram smoothing. As touched on in Section 5.1, linear discounting can be motivated through 
a Dirichlet or Beta prior on probabilities [29, 30], but it has been shown to perform poorly. While 
absolute discounting yields better performance, it is unclear how to elegantly express this technique 
through a prior distribution. In contrast, the Gaussian prior is applied to A# parameters which are 
linear in log-probability, and leads to logarithmic discounting. This simple prior yields discounting 
that is qualitatively and quantitatively similar to the empirical ideal. 

Not only can the Gaussian prior be applied to maximum entropy modeling, but it can also be ap- 
plied in the more general minimum divergence paradigm [37, 38]. Maximizing entropy is equivalent 
to finding the model with the smallest Kullback-Leibler divergence from the uniform distribution. 
In minimum divergence modeling, one selects the model satisfying the given constraints closest to 
some default distribution qo(x). The model qo(x) can be used to express prior knowledge about 
the domain. Minimum divergence models have the form 

1 F 
quT>{x) = -=- qo(x) exp(VAj/i(a;))    . ZA 1=1 

The analysis in Section 5 applies to these models without modification. 
Maximum entropy modeling has advantages over competing approaches in terms of elegance, 

generality, and performance, and the Gaussian prior is a powerful tool for smoothing general ME 
models. Whether the Gaussian prior proves superior to other algorithms in domains other than n- 
gram modeling is still an open empirical question. In n-gram models, no features partially overlap 
each other, and this is not the case in general. In addition, how parameters should be tied in 
other domains has yet to be explored.8 Nonetheless, our results and analysis justify the choice of a 
Gaussian prior for use in n-gram modeling, and strongly suggest its use in other situations as well. 

With n-gram models, we found that a single variance a for the whole model worked quite well, though using 
separate am for each level of the n-gram model worked slightly better. However, this partitioning is not applicable 
in general. 
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A    Derivation of Modified Constraints and Modified Iterative Scal- 
ing for the Gaussian Prior 

In this section, we derive the modified constraints given in equation (16) and the modified update 
for improved iterative scaling given in equation (15) for the Gaussian prior method suggested by 
Lafferty. We use the conditional ME formulation. For further details about improved iterative 
scaling such as proof of convergence, refer to [3]. 

To derive the modified constraints, we take the partial derivatives of the objective function 
given in equation (13) with respect to the parameters A; and set them to zero. 

F   A? 
L'xW   =   S^x>y)log9A(yla;)~I]TT + const(A) 

x,y i=i      i 

F   A? 
=    X]p(3,y)X]A,-/,-(x,j/) -^p(a:,y)log]rexp(J]Ai/i(x,?/)) - ]T —^ + const(A) 

x,y i x,y yi i i=\       i 

^ = £«'■ ri/,(x,,) - i>(*,,) E exp(E;A,Zf'"'"*<*■ * - £ 0A< x,y x,y y> ZA(a;J <?i 

=    X^'^^'^X^^'^l^A^lz)/;^,?/) \ 
x,y x,y yi i 

=    ^p{x,y)fi{x,y)-Y^P{x)^^W\x)fi{x^)Yl^y\x) J 
x,y x yi y i 

=  J2P(
X
' y)Mx> y) - ^2P{x)QA(y\x)fi(x, y) —\ 

x,y x,y i 

Equation (16) follows simply from the last line. 
The derivation of the modified improved iterative scaling update is identical to the original 

derivation except for the presence of extra terms for the prior. In each iteration, we try to find 
A = {S{} that maximizes the increase in the objective function: 

L'X(A + A)-LX(A) = £p(*,y) £*/.•(*,«/)- 
x,y i 

^p{x) log £3 qK(y\x) expQ^ SJi(x, y)) - —^ £)(2A.-fc + 6i)    • 
x y i i     i 

As it is not clear how to maximize this function directly, we find an auxiliary function 5(A) that 
we can maximize that bounds this function from below. We would like the maximum of 5(A) to 
be larger than zero whenever A is not optimal, i.e., whenever A does not satisfy the constraints in 
equation (16). % 

Using the inequality log x < x — 1, we get 

L'X(A + A)-L'X(A)  > 5X*>jO£*/.-(*,y) + l- 
x,y i 

J2P(x)52qA(y\x)exp(J2SJi(x,y))--^J2(2XA + Si)  = A(A)   • 2°?   * 
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Substituting in f*(x,y) = J2ifi(x>n) an<^ applying Jensen's inequality, we arrive at 

A(A) > x^.y) £>■/,•(*, y) + i- 

E^)E?A(^i-)E^4exp(^#(a;^))-^2E(2A^ + ^) = *(A) • 
x y i     ■>     v    ' "' i     i 

Taking the partial derivative of B(A) with respect to Si, we get 

V°i x,y x y i 

Equation (15) follows by setting these derivatives to zero. Notice that B(0) = 0 and that V5(0) = 0 
only if A satisfies the constraints. It follows that the maximum of -B(A) will be larger than zero 
when A is not optimal, as desired. 
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